Assembly and Machine

Midterm Exam

Language - Spring 1398 (2019)

Instructor:
B. Nasihatkon

st €9

K. N. TOOSI UNIVERSITY OF TECHHNOLOGY

Name:

ID: Ordibehesht 1397 - May 2018

Functions from the book

Programming: Write programs in the
designated code area as follows:

call print int

prints EAX as a signed

integer

call print nl

prints a newline character

Use 32-bit Netwide assembler code on a Linux
machine.

label command | arguments
loopl: |call prog2

add eax, ebx
prog2:

Question 1 (20 points) Update the values of the required registered after running each

of the assembly instructions below. Notice that each instruction depends on the previous
one. Write down the complete solutions for the signed cases.

command AX AL AL AH
(hex) | decimal (unsigned) | decimal (signed) decimal (signed)
mov ax,0x12C8 |12CS8 200 -56 18
C8h = 11001000 12h is positive
2C : 00111000=56 1*16+2 = 18
shl ax, 3 9640 64 64 -106
40h is positive 96h = 10010110
4*16+0=64 2C = 01101010=106
sar ah, 2 E540 64 64 =27
unchanged E5h = 11100101
2C = 00011011
= 27
ror ax, 1 72A0 160 -96 114
AOh = 10100000 72h is positive
2C = 01100000 7*16+2=114
= 96
add al, ah 7212 18 18 114
12h is positive unchanged
1*16+2 = 18

K. N. Toosi University of Technology

Question 2 (20 points)
What does the following code print? How the output relates to the input. What does each
of the loops do? Explain each part of the code on the right-hand side. Assume that the

input is positive.

mov

mov
mowv
loopl:
cmp

mov
mov
div

cmp
jnz

inc
notzero:

inc
Jjmp
endloopl:

mov

mov
loop2:

pop

add

call read_int

ebx, eax

esi, O
ecx, 1

ecx, ebx

ja endloopl

eax, ebx
edx, O
ecx

edx, O
notzero

push ecx

esl

ecx
loopl

eax, 0
ecx, esi

ebx
eax, ebx

loop loop2

call print _int
call print nl

Let n be the input. The code reads an input n and prints
the sum of its divisors. The first loop pushes the
divisors on the stack. The second loop adds up the
elements pushed on the stack.
ESI=no of divisors =0
for ECX=1..n{

EDX =remainder =n % ECX

if (remainder = 0) {

push ECX

no_of divisors += 1

}

ECX+=1

EAX =0
Repeat no_divisors times {

EAX += stack.pop();

print EAX

K. N. Toosi University of Technology

Question 3 For each piece of assembly code in the left column, write a single
equivalent assembly instruction. Disregard changes to the FLAGS registers. Explain your
answer in the final column. (25 points)

Single Instruction

Explanation

rol
and

eax, 7
eax, OxFFFFFF80

shl eax, 7

Rotates the bits of EAX 7 bits to the left,
then zeros out the lowest 7 bits.

jnc nocarry
inc eax
nocarry:

add eax, ebx

ADC eax, ebx

EAX = EAX + EBX + CarryFlag

mov
and
shr
or

pop

push edx

edx, 0x80000000
edx, eax

eax, 1

eax, edx

edx

SAR eax, 1

Tests the sign bit of the EAX. Then shifts
EAX to the right (fills with zero from
left). If the sign bit of EAX was 1 in the
first place, sets the last bit of the shifted
EAX to 1.

Xor
mov
shl
shr
or

pop

push edx

edx,edx
dl, al
edx, 24
eax, 8
eax, edx

edx

ROR EAX, 8

Saves the first 8 bits of EAX in DL. Shift
EAX 8 bits to the right. Then sets the last
& bits of EAX to what was saved in the
DL.

mov
mov
not
not

and
and
or

pop
pop
pop

push ebx
push ecx
push edx

ebx
eax

ecx,
edx,
ecx
edx

edx
ecx
ebx

ebx,
eax,
eax,

edx
ecx
ebx

XOR EAX, EBX

A XOR B = (not(A) and B)
OR

(A and not(B))

K. N. Toosi University of Technology

Question 4 We want to implement a function with a variable number of arguments.

int sum(int n, ...). The firstargument n is always equal to the number of the
remaining arguments. The function computes and returns the sum of the remaining
arguments. For example sum(3,4,7,5) returns 16, while sum(3,4,7,5, 8)is invalid
(we never perform such a call). The assembly code below consists of two files: main.asm
and sum.asm. On the left (main.asm) write an assembly code which computes the sum of
the registers eax, ebx, ecx, edx, esi, and edi by calling the function sum, and then prints
it using the print_int function. On the right (sum.asm) write the body of the function sum.
Assume that the first argument n is positive. Observe all C declaration calling
conventions. Define the appropriate derivatives global, extern if needed. (35 points)

main.asm Sum.asm
label command | arguments
segment .text sum: push ebp
mov ebp, esp
main:
_ mov eax, O
push edi
push esi mov edx, ebp
push edx add edx, 12
push ecx mov ecx, [ebp+8]
push ebx loopl:
push eax add eax, [edx]
push 6 add edx, 4
call sum
add esp, 28 loop loopl
call print int
call print nl
mov ebx, 0
mov eax, 1 pop ebp
int 0x80 ret

K. N. Toosi University of Technology

